Answers

- 1) a) Place the Spherometer on a Glass pad and when the Points of the Screw and legs are adjusted to be on the same plane,Zero mark will be on one line
 - b) i) Placing the Spherometer on a glass Pad and adjusting the points of Screw and Legs to be on one plane, and noting the reading.
 - ii) Placing the piece of Metal between the Legs ,and adjusting the Screw Point to touch the adjoining surface, and recording the reading.
 - c) Yes. The piece should be of the size so that it can be inserted between the Legs of the Spherometer.
 - d) Micrometer Screw Gauge.
 - e) Vernier Caliper
 - f) i) smallest measurement 0.01g
 - ii) Maximum mass 311g
 - iii) Reading 3.27 g

iv) percentage error=
$$\frac{0.01}{3.27}$$
 x 100%

g) I) Procedure 1: noting down the reading on the measuring Beaker relevant to the volume up to the free surface of Water.

> Proceedure 2:immersing the piece of metal fully under Water, noting down the readings between the Water surfaces and finding the difference between these readings.

ii) By substituting Density = Mass /Volume

$$\rho = \frac{3.27 \ x \ 10^{-3}}{1.2 \ x \ 10^{-6}} = 2725 \ \text{Kg m}^{-3}$$

- 2) a) i) Vapor Generator
 - ii) Vapor Trap
 - iii) Calorimeter
 - iv) Thermometer
 - b)

Error	Method of elimination
Water	Using of Vapor Trap
mixing with	
Vapor	
Heat loss to	Cooling the Water by 5°C
the	below room
environmen	temperature,commencin
t	g the experiment and
	collecting Vapor only up
	to increase in
	temperature by 5°C

- c) 1.mass Of Calorimeter +Stirrer (m₁)
 - 2. mass of Water + Calorimeter + Stirrer (m₂)
 - **3.** Initial temperature of Water (θ_1)
- d) 1 maximum temperature of the system (θ_2)
 - 2. Final mass of the System after dissolution of Vapor(m₃)
- e) i) Amount of energy that should be supplied only for the complete vaporization of a unit mass of a liquid at boiling point.

ii)
$$(m_3 - m \ 2)L + (m_3 - m_2)c_w$$

x (100 - θ_2) =
 $[m_1c_s + (m_2 - m_1)c_w]$
x ($\theta_2 - \theta_1$)

- f) i) mass of the vapor collected
 - ii) Since it is of a small amount it should be measured perfectly.
- g) i) by $\Delta W = P \times \Delta V$

$$\Delta W$$
 = 1.0 x 10⁵ x (1671 -1) x 10⁻⁶ = 167J

ii) by $\Delta Q = mL$

$$\Delta Q = 994 \times 1 \times 10^{-6} \times 2.26 \times 10^{6} = 2246.4 \text{ J}$$

- by $\Delta Q = \Delta U + \Delta W$ increase in internal energy
- $\Delta \boldsymbol{U} = \Delta \boldsymbol{Q} \Delta \boldsymbol{W}$

- = 2079.4 J
- iii) This energy is spent in breaching the Molecule attractive Force.
- 3) a) i) The Fluid should flow under a stream line and steady Flow.
 - ii) The fluid should be homogeneous
 - iii) Since a Pressure is applied cross sectional area of the Pipe/Tube should not vary.
 - b) Cannot apply. Human Blood is not homogeneous. When a Pressure is exerted cross sectional area of the Blood Vessels will vary.
 - c) Initially it should be cleaned with NaOH followed with HNO₃ and finally with distilled Water.
 - d) To prevent Water particles accelerating under gravity. Thereby a streamline flow could be easily established.
 - e) i) Constant Pressure Vessel
 - ii) When the Tap is open, lifting the constant pressure vessel and by varying the vertical height between

the surface of Water and the capillary tube.

iii) Pressure difference =

 $\Delta P = H_0 + h\rho g - H_0 = h\rho g$ and through this Pressure gradient is

$$\mathsf{P} = \frac{\Delta p}{l} = \frac{h\rho g}{l}$$

here h- height of the free surface of water, ρ -density of water g - gravitational acceleration, *l*- length of pipe.

f) Collecting the water that flows through the capillary tube within a particular time, and measuring the volume with a measuring jar and dividing it by the relevant time.

g) i) By
$$\frac{V}{t} = \left(\frac{k}{\eta}\right)$$
 p, becomes $\frac{V}{t} = \left(\frac{k}{\eta}\right) \frac{h\rho g}{l}$

and will be $\frac{V}{t} = \left(\frac{k\rho g}{\eta l}\right)$ h .As per this the graph h against $\frac{V}{t}$ can be drawn.

ii) 1) On the graph the following coordinates can be chosen.(6,0.4) and (54,3.6) .Then the gradient will be as shown below.

$$m = \frac{(36.4 - 0.4)}{(54 - 6)} = 0.067 \times 10^{-4} m^2 s^{-1}$$

2) while Gradient of the graph is

m =
$$\frac{k\rho g}{\eta l}$$
 and $\eta = \frac{k\rho g}{ml}$ then
 $\eta = \frac{1.72 \times 10^{-13} \times 1000 \times 10}{0.067 \times 10^{-4} \times 34.5 \times 10^{-2}}$
= 7.44 x 10⁻⁴ Kg m⁻¹ S⁻¹

h) Since Glycerin does not flow freely it cannot be used

- 4) 04. (a) motion away from the coil motion towards the Coil
- b) i) Law of Fared and of lens regarding induction of Electro Magnet
 - ii) In such a way as to cause the opposition action to the action which led to it
- c) 1) Increasing the speed of motion of the Rod Magnet
 - 2) To utilize a Rod magnet of higher intensity
 - 3) Increasing the number of windings/ Diameter of the coil
- d) i) Demonstration of the workings of a Transformer
 - ii) Usage of a Plug Key, thereupon a steady current flow takes place in the primary coil, and the deflection on the Galvanometer will be more Stable.
 - iii) When the Switch is connected there will be a deflection initially on G₂ and will disappear. When the Switch is connected, while a magnetic field not available previously will be created, and will create magnetic field rays on the adjoining Coil. Then the action of magnetic induction will take place and a current flow will be induced. Since the magnetic field will be constant afterwards, initial current flow will reduce gradually.

e) while $\frac{V_1}{V_2} = \frac{N_1}{N_2}$ and since there is no loss of energy either $P_1 = P_2$ or $V_1 I_1 = V_2 I_2$ Since $\frac{V_1}{V_2} = \frac{I_1}{I_2}$ then it should be $\frac{N_1}{N_2} = \frac{I_1}{I_2}$ then from $\frac{25}{50} = \frac{I_2}{50} I_2 = 250$ mA

- f) i) Since it has higher permeability, the magnetic flux on the Primary coil is fully combined to the Secondary coil
 - ii) 1) Jule heating
 - 2) Formation of eddy current